Robb T. Koether

Hampden-Sydney College

Wed, Aug 30, 2017

«Or «Fr «=>» E E ©HAe



@ The World Coordinate System
9 The Projection Matrix

© The Vertex Shader

@ Uniform Shader Variables

e Assignment



@ The World Coordinate System
Q The Projection Matrix

Q The Vertex Shader

0 Uniform Shader Variables

Q Assignment

«40>» «F)>r «=) « > = Q>



The world coordinate system is the single coordinate system in which
all objects are placed when the scene is rendered.




World Coordinates in 2D

@ The default world coordinate system is a “square” with —1 < x < 1
and —1 < y <1, regardless of the size or shape of the window.

@ Typically, this is not the best choice.
@ To change the world coordinate system, we need a transformation.

@ The function ortho2D () will produce the appropriate
transformation matrix (called the projection matrix), if we specify
the coordinates of the window boundaries: left, right, bottom, top.

Robb T. Koether (Hampden-Sydney College) The Projection Matrix Wed, Aug 30, 2017 5/21



0 The World Coordinate System
e The Projection Matrix

Q The Vertex Shader

Q Uniform Shader Variables

Q Assignment

«40>» «F)>r «=) « > = Q>



The Projection Matrix

@ The projection matrix produced by ortho2D () is

S

_r+t

R &
p—| 9 5 0 —rp

0O 0 1 0

o 0 0 1

where ¢ = left, r = right, b = bottom, t = top,

Robb T. Koether (Hampden-Sydney College) The Projection Matrix Wed, Aug 30, 2017 7/21



The Projection Matrix

@ Matrix multiplication X’ = PX will perform the transformation.

x: -2 (2) 0 —%ﬁ; X
Yl 9 & 0 —rp y
0 0 0o 1 0 0
1 0 0 O 1 1

Robb T. Koether (Hampden-Sydney College) The Projection Matrix Wed, Aug 30, 2017 8/21



The Projection Matrix

The Projection Matrix

@ The default projection matrix uses ¢ = -1, r =1, b= —1, and
t = 1, which produces the identity matrix.

@ Then the projection matrix is

O OO =
[eNeR o]
o =+ OO
- O O O

@ Every point X is left unchanged: PX =IX = X.

Robb T. Koether (Hampden-Sydney College) The Projection Matrix Wed, Aug 30, 2017 9/21




The Projection Matrix

The Projection Matrix

@ Suppose our scene is drawn in a rectangle with left = —4,
right = 4, bottom = —3 and top = 3.

@ Then the projection matrix is

o =+ O O
- O O o

O O OR=
O Ow—= O

@ Map the corners (—4, —3), (4,-3), (4,3), and (-4, 3).
@ Map the point (2, 1).

Robb T. Koether (Hampden-Sydney College) The Projection Matrix Wed, Aug 30, 2017 10/21




The Projection Matrix

The Projection Matrix

@ Suppose our scene is drawn in a rectangle with left = 0, right = 8,
bottom = 0 and top = 4.

@ Then the projection matrix is

100 —1
o 3o -1
P=loo01 o
000 {1

@ Map the point (4, 2).
@ Map the point (2, 1).

Robb T. Koether (Hampden-Sydney College) The Projection Matrix Wed, Aug 30, 2017 11/21




0 The World Coordinate System
Q The Projection Matrix

© The Vertex Shader

Q Uniform Shader Variables

Q Assignment

«40>» «F)>r «=) « > = Q>



The Vertex Shader

@ The multiplication by P takes place in the vertex shader (because
the vertices are stored in the GPU buffer).

@ Therefore, we must pass the projection matrix to the vertex
shader.

@ The shader will multiply it by the vertex to transform it.

Robb T. Koether (Hampden-Sydney College) The Projection Matrix Wed, Aug 30, 2017 13/21



0 The World Coordinate System
Q The Projection Matrix

Q The Vertex Shader

@ Uniform Shader Variables

Q Assignment

«40>» «F)>r «=) « > = Q>



Uniform Shader Variables

@ A uniform shader variable is a shader variable whose value does
not change during the processing of the vertices of a primitive,
i.e., during a call to glDbrawArrays ().

@ lIts value is set by the application program and passed to the
shader before calling glDrawArrays ().

Robb T. Koether (Hampden-Sydney College) The Projection Matrix Wed, Aug 30, 2017 15/21



GLint glGetUniformLocation (program,

uniform variable.

var_name) ;

@ In the application program, we must get a shader location for the

@ The glGetUniformLocation () will return a location.

«0O0>» «F» «)>» « Q>

it
v



Uniform Shader Variables

Passing a Shader Variable

void glUniformx (location, value);
void glUniformx (location, count, values);
void glUniformMatrixx (location, count, GL_TRUE, values);

@ The functions glUniformx () and glUniformMatrixx () will
pass the value(s) to the shaders.

@ The third parameter of glUniformMatrixx* () tells whether the
matrix is stored in row-major order (row by row rather than column
by column).

@ See p. 48 of the Red Book.

Robb T. Koether (Hampden-Sydney College) The Projection Matrix Wed, Aug 30, 2017 17/21



Passing the Projection Matrix

Passing the Projection Matrix

matd4 proj = ortho2D(left, right, bottom, top);
GLuint proj_loc = glGetUniformLocation (program, "proj");
glUniformMatrix4fv (proj_loc, 1, GL_TRUE, proj);

@ This code with create the projection matrix and pass it to the
shaders.

@ "proj" is the name of the uniform variable in the shader.

@ ltis a really good idea to keep the same name in order to avoid
confusion.

@ Later, we will have many uniform variables.

Robb T. Koether (Hampden-Sydney College) The Projection Matrix Wed, Aug 30, 2017 18/21



Using the Projection Matrix

Using the Projection Matrix

uniform mat4 proj;

layout (location = 0) in vec2 vPosition;

void main ()

{

gl_Position = proj*vecd (vPosition, 0.0f, 1.0f);
}

@ In the shader program, we simply declare the variable to be
uniform.

@ The name must match the name specified in the application
program.

@ Then multiply it by the position vector and assign to
gl _Position.

Robb T. Koether (Hampden-Sydney College) The Projection Matrix Wed, Aug 30, 2017 19/21




o The World Coordinate System
9 The Projection Matrix

Q The Vertex Shader

0 Uniform Shader Variables

a Assignment

«O0>» «F» «E» « E>» = Q>



@ Assignment 5, to be turned in by Monday.
@ Read pp. 203 - 210, User Transformations.




	The World Coordinate System
	The Projection Matrix
	The Vertex Shader
	Uniform Shader Variables
	Assignment

